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When nuclear rearrangement collisions are dominated by Coulomb

forces, as in the case of high-Z targets and/or projectiles at low
bombarding energies, it is often possible to obtain a good approximation

to the cross section which can be expressed in closed form,| Recently

Morinigo 1) has developed such an expression for L = 0 stripping
reactions, under the assumption of zero-range forces, In this note
we shall indicate how the theory may be extended to include finite-range
effects, at least to first order, valid for all L.

We consider the reaction (AB) + C — A + (BC), for which the

transition amplitude is given approximately by
- %(w L_}/h,(g) ap (RM @ (R (1)), (1)

Here, ¢ ¢(R') denotes the final (BC) bound state and ¢, (R) the initial

(AB) bound state, while 1]/:,) (r') and 1‘/:)(3;) denote the scattering states
of A relative to (RC) ana-E;B) relativeM;o C, respectively. The coordinates
are given by R =rp -rg, R =1, = rp, ! =1, =R, andr =R -1,
where R.. and R, are the center-of-mass coordinates of (BC) and (AB).

The derivation of eq. (1) is quite standﬁrd; see, for example, ref, 2).
The next assumption, however, that 1Pk,and lpk may be regarded as pure
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Coulamb waves, is the heart of the present theory, and depends for its
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validity on the fact that the Coulomb barrier depresses the wave function
in just the regions where the nuclear forces are expected to distort it
most noticeably. This point has been discussed at length in refs. 3’}4);
here we shall simply assume that all of the necessary conditions have
been met.

Now in Morinigo's zero-range theory, VAB is approximated by a
S-ﬁmction, thus reducing the expression for T.1f to a single integral

which can be evaluated in closed form., Here we treat V,p more accurately,
by relating it to the bound state 4)1 and making use of an important -
property of Coulomb wave functions .‘

We begin by introducing the Fourier transforms of c_b(g) and l‘/k(fv),
which will be denoted by ib(}:) and lpk(g). The transition amplitud:

may then be written
PN
Ti)c :33[%(3)1}/3(#}] FLP)Q/k (p) dpdp, (2)

whereP=p‘ -fpandP' =‘p--fp' with S-M/(M + M )and j-
M /(MC M.B) The function F, (P) is the Fourier transform of v, (R)d) (R),

thus we may write
FR) =~ (6o + FPY2M) 4 (B) = - (BaM,g) (a®+ P*) K (P),

where MAB is the reduced mass of the system (AB) and €,_ is its binding

energy.
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Both F;(P) and 4)1.(2') are fairly smooth functions of their argu-
ments, peaked near the origin; of them Fi(}:) is the flatter, and in
fact is constant in the zero-range approximation to VAB' In contrast,
the scattering transforms are very sharply peaked functions, as may

be seen from the equation they satisfy:

() 3 | (¥)
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+ -ip-r (%)
Th( )(E) = S ¢ 'L ~ V() l.l./k () dr. (5)

For short-range forces the T matrix Tk(p) is relatively slowly varying,

but for the long~range Coulomb force V(E) - Vo/r one finds that 5,6)

) | | 2 p2tin
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thus both terms in eq. (L) are singular at p = k. Since the integrand
of eq. (2) contains the factor L[;:(B!)* ll/:)(g) , the main contribution
to the integral comes from a regi;n about thllxe point E - lc, E' - 5', and
we may remove the slowly varying Fi(g) from under the integral sign+

as follows:
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From this point on we may use Morinigo!s results; the only dif-
ference now is the presence, as a factor in Ty, of the "form factor®
(2’.')%1?1(.15" 3‘}5) instead of its zero-range counterpart, -).n_r (25)% {12/214‘3.
The integra.'L. in eq. (7) may be carried out for L = O final states which

1,3,8
are linear combinations of rnexp(-Er)/r; the basic integral is »3,8)
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where Q = Kt-k, Kt = 3’}5‘, Co(:{) - 1:(1+i:1)exp(-1r|3/2), and :\ and 3'
are_the charge paramejoers in the initial and final state respectively.
Note that 0 €2z <1 for all angles of scattering,

For final states with L # O the calculation is more difficult,
because of the presence of YLM(?') in (lzf. However, it is always possible

to find a differential operator Qm(g) such that

im .‘g'!:
a0 2Aim (g> e (10)
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thus eq. (7) can be evaluated analytically for final states of the form

rEY L, e/ (11)
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In this case the basic integral is

lg-x—pr
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which may be obtained from Nordsieck's paper.

Unfortunately, in the important asymptotic region where the Coulomb
wave functions are large, (1l1) is not a very good approximation to ‘ff
(because of the factor rL). At present there is no completely satis-
factory way of avoiding this difficulty. However, if ?i isan L =0
state, we may obtain an expression in closed form by removing ¢f(£,')

instead of Fi(P) from under the integral sign in eq. (2):

H2
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Now, since VAB

imation to ¢>i with terms of the form r exp(- Fsr)/r will lead to integrals

. . 2
(ipi may be written in terms of _(lbi and {/ c})i, an approx-

which can be evaluated by means of eq. (8).
Finally, we should like to mention that at very large momentum trans-
fers the presence of the finite-range form factor Fi(5'- fg) may reduce

the cross section drastically. 9)

In this case the "peaking approximation®
used above is of dubious value, since Fi(P) is rapidly varying in the
vicinity of the scattering transform peak. However, such large momentum ‘

transfers indicate that the reaction is taking place within or near the

nuclear surface, and under these conditions the Coulomb wave approximation

is not expected to be valid in any event,




Footnote

This "peaking approximation" for Coulomb waves has also been

used by other authors; see, for example, refs. 6’7).
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